Article ID Journal Published Year Pages File Type
1971959 Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2015 11 Pages PDF
Abstract

Increased internal ammonia (hyperammonemia) and ischemic/anoxic insults are known to result in a cascade of deleterious events that can culminate in potentially fatal brain swelling in mammals. It is less clear, however, if the brains of fishes respond to ammonia in a similar manner. The present study demonstrated that the crucian carp (Carassius carassius) was not only able to endure high environmental ammonia exposure (HEA; 2 to 22 mmol L− 1) but that they experienced 30% increases in brain water content at the highest ammonia concentrations. This swelling was accompanied by 4-fold increases in plasma total ammonia (TAmm) concentration, but both plasma TAmm and brain water content were restored to pre-exposure levels following depuration in ammonia-free water. The closely related, ammonia-tolerant goldfish (Carassius auratus) responded similarly to HEA (up to 3.6 mmol L− 1), which was accompanied by 4-fold increases in brain glutamine. Subsequent administration of the glutamine synthetase inhibitor, methionine sulfoximine (MSO), reduced brain glutamine accumulation by 80% during HEA. However, MSO failed to prevent ammonia-induced increases in brain water content suggesting that glutamine may not be directly involved in initiating ammonia-induced brain swelling in fishes. Although the mechanisms of brain swelling are likely different, exposure to anoxia for 96 h caused similar, but lesser (10%) increases in brain water content in crucian carp. We conclude that brain swelling in some fishes may be a common response to increased internal ammonia or lower oxygen but further research is needed to deduce the underlying mechanisms behind such responses.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,