Article ID Journal Published Year Pages File Type
1973401 Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2008 7 Pages PDF
Abstract

The effects of 2.7 mT and 10 mT static magnetic fields were investigated on two identified neurons with different bioelectric properties of the snail Helix pomatia. Membrane resting potential, amplitude, spiking frequency, and duration of action potential were measured. The two neurons of H. pomatia, parabolic burster Br and silent N1, showed different responses to a static magnetic field. The magnetic field of 2.7 mT intensity caused changes in the amplitude and duration of action potential of the Br neuron, whereas the 10 mT magnetic field changed the resting potential, amplitude spike, firing frequency, and duration of action potential of the Br neuron. Bioelectric parameters measured on the N1 neuron did not change significantly in these magnetic fields.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,