Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1974009 | Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology | 2008 | 6 Pages |
Abstract
The gastric physiology of the Dungeness crab, Cancer magister, was investigated over a range of oxygen tensions. Postprandial crabs reacted differently to hypoxia compared with unfed animals. The bradycardic response in postprandial animals was reduced, suggesting a summation of responses with feeding. A similar pattern was observed for ventilation rate. In unfed animals ventilation rate increased slightly as oxygen levels declined, but dropped significantly in oxygen tensions below 3.2Â kPa, whereas in postprandial crabs it increased significantly in the lower oxygen regimes. Gastric processing of the meal was followed using a fluoroscope. Pyloric contraction rates were maintained during mild hypoxia, but decreased in 5.3Â kPa oxygen tension and below. This led to an increase in clearance times of digesta from the foregut, midgut and hindgut regions. The slowing of gastric processing in the lower oxygen tensions suggested that the animals were unable to maintain their internal oxygen concentration. A significant reduction in efficiency of assimilation only occurred in the lowest oxygen regime tested (1.6Â kPa). The range of hypoxia where gastric processing was affected corresponded closely to the levels of oxygen that modulate the foraging behaviour of C. magister. By using both physiological and behavioural mechanisms C. magister can maintain digestive processes, even in severely oxygen depleted environments.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Iain J. McGaw,