Article ID Journal Published Year Pages File Type
1974295 Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2010 8 Pages PDF
Abstract

Siboglinids are symbiotic polychete annelids having hemoglobins as essential oxygen- and sulfide-carriers for their endosymbiotic bacteria. We analyzed the structure of the hemoglobins from two species of siboglinids: the monilifera Sclerolinum contortum and the frenulata Oligobrachia webbi (i.e. haakonmosbiensis) from Norwegian cold seeps. Measured by Multi-Angle Laser Light Scattering (MALLS), Sclerolinum shows a 3190 ± 50 kDa hexagonal bilayer hemoglobin (HBL-Hb) and a 461 ± 46 kDa ring-Hb, just as vestimentifera, whereas Oligobrachia has a 409 ± 3.7 kDa ring-Hb only. Electrospray Ionization-Mass Spectrometry (ESI-MS) showed Sclerolinum HBL-Hb composed of seven monomeric globins (15–16 kDa), three disulfide-bonded globin heterodimers and three linkers. The heterodimers always contain globin-b (15814.4 ± 1.5 Da). Sclerolinum ring-Hb is composed of globins and dimers with identical masses as its HBL-Hb, but lacks linkers. Oligobrachia ring-Hb has three globin monomers (14–15 kDa) only, with no disulfide-bonded dimers. Comparison of Sclerolinum hemoglobins between Storegga and Haakon Mosby Mud Volcano, using the normalized height of deconvoluted ESI-MS peaks, shows differences in globin monomers abundances that could reflect genetic differences or differential gene expression between distinct seep populations. The discovery of HBL-Hb in Sclerolinum is a new element supporting the hypothesis of monilifera being phylogenetically more closely related to vestimentifera, than to frenulata.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,