Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1974514 | Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology | 2006 | 14 Pages |
This review presents a new perspective on the circadian regulation and functions of insect developmental hormones. In Rhodnius prolixus (Hemiptera), the brain neuropeptide prothoracicotropic hormone (PTTH) is released with a circadian rhythm that is controlled by paired photosensitive clocks in the brain. These clocks comprise the dorsal and lateral PER/TIM clock neurons known to regulate behavioral rhythms in Drosophila. Axons of PTTH and clock cells make close contact. Photosensitive PER/TIM clocks also reside in the paired prothoracic glands (PGs), which generate rhythmic synthesis and release of the ecdysteroid molting hormones. The PG clocks are entrained by both light and PTTH. These four clocks are coupled together by both nerves and hormones into a timing system whose primary regulated output is the circadian rhythm of ecdysteroids in the hemolymph. This complex timing system appears necessary to ensure circadian organization of the gene expression that is induced in target cells by ecdysteroids via circadian cycling of the nuclear ecdysteroid receptor (EcR). This multioscillator system serves to transduce ‘the day outside’ into endocrine rhythms that orchestrate ‘the day inside’. It has many functional similarities with vertebrate circadian systems.