Article ID Journal Published Year Pages File Type
1982899 Insect Biochemistry and Molecular Biology 2007 7 Pages PDF
Abstract

In insects, selection of insecticide-insensitive acetylcholinesterase (AChE) is a very common resistance mechanism. Mosquitoes possess both AChE1 and AChE2 enzymes and insensitivity is conferred by single amino-acid changes located near the active site of the synaptic AChE1. Only two positions have been reported so far to be involved in resistance, suggesting a very high structural constraint of the AChE1 enzyme. In particular, the G119S substitution was selected in several mosquitoes’ species and is now largely spread worldwide. Yet, a different type of AChE1 insensitivity was described 10 years ago in a Culex pipiens population collected in Cyprus in 1987 and fixed thereafter as the ACE-R strain. We report here the complete amino-acid sequence of the ACE-R AChE1 and show that resistance is associated with a single Phe-to-Val substitution of residue 290, which also lines the active site. Comparison of AChE1 activities of the recombinant F290 V protein and ACE-R mosquito extracts confirmed the causal role of the substitution in insensitivity. Biochemical characteristics of the mutated protein indicated that the resistance level varies with the insecticide used. A molecular diagnosis test was designed to detect this mutation and was used to show that it is still present in Cyprus Island.

Related Topics
Life Sciences Agricultural and Biological Sciences Insect Science
Authors
, , , ,