Article ID Journal Published Year Pages File Type
2009120 Pesticide Biochemistry and Physiology 2015 13 Pages PDF
Abstract

•Free radicals are implicated in maneb and paraquat toxicity.•NADPH oxidase is imperative for free radical generation in polymorphs.•NADPH oxidase mediates maneb and paraquat-induced oxidative stress in polymorphs.•Mitochondrial dysfunction contributes in maneb and paraquat-induced cytotoxicity.•NADPH oxidase partially regulates mitochondrial dysfunction in polymorphs.

Oxidative stress is a key factor in Parkinson's disease (PD) pathogenesis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and impaired mitochondrion regulate oxidative stress-mediated maneb (MB)- and paraquat (PQ)-induced Parkinsonism. However, their contribution in the MB- and PQ-induced toxicity in polymorphonuclear leukocytes (PMNs) is still elusive. The study investigated the role of NADPH oxidase and mitochondria in MB- and/or PQ-induced oxidative stress in the PMNs and the crossing point between the two. Animals were treated with MB and/or PQ for 1–3 weeks along with respective controls. In a few sets of experiments, rats were treated with/without NADPH oxidase inhibitor, apocynin, an hour prior to MB and/or PQ treatment. PMNs of MB and/or PQ treated animals were also treated with/without carbonyl cyanide 3-chlorophenylhydrazone (CCCP) to assess the role of the mitochondria in superoxide and total free radical productions. MB and/or PQ were found to increase the level of total reactive oxygen species (ROS), superoxide radicals, catalytic activity and expression of NADPH oxidase and superoxide dismutase (SOD1/2) and mitochondrial ROS content in a time dependent manner. Conversely, catalase activity and mitochondrial membrane potential were attenuated. Apocynin alleviated MB- and/or PQ-induced changes in total ROS, superoxide radicals, expression/catalytic activity of NADPH oxidase and SOD1/2 along with the mitochondrial ROS and membrane potential. CCCP also inhibited ROS and superoxide levels in the PMNs of MB and/or PQ-treated animals. The results demonstrate the involvement of NADPH oxidase and mitochondrial dysfunction in MB and PQ-induced oxidative stress in PMNs and a plausible crosstalk between them.

Graphical AbstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , , , , , , ,