Article ID Journal Published Year Pages File Type
2010895 Pharmacological Reports 2014 10 Pages PDF
Abstract

BackgroundThe endogenous opioid system constitutes an attractive target in the treatment of GI disorders, including inflammatory bowel diseases (IBD). The aim of our study was to characterize the anti-inflammatory and antinociceptive effect of P-317, a novel cyclic analog of opioid peptide morphiceptin, in animal models of IBD.MethodsThe anti-inflammatory effect of P-317 after intraperitoneal (ip) and oral (po) administration was assessed in two mouse models of IBD – Crohn's disease, induced by intracolonic instillation of trinitrobenzenesulfonic acid (TNBS) and ulcerative colitis, induced by addition of dextran sodium sulfate (DSS) into drinking water. The antinociceptive action of P-317 was characterized in mice with acute colitis using mustard oil-induced pain test. Real time RT PCR was used to assess semiquantitatively the expression of IL-1β and TNF-α mRNA in mouse colonic samples. To translate our results to clinical conditions, MOP and KOP mRNA were quantified in human colonic biopsies from IBD patients.ResultsP-317 (0.1 mg/kg, ip and 1 mg/kg, po) alleviated colonic inflammation in TNBS- and DSS-treated mice in the opioid receptor-dependent manner. The anti-inflammatory effect of P-317 was associated with the decrease in mRNA expression of proinflammatory cytokines. The antinociceptive effect of P-317 was observed after ip and po administration in mice with acute colitis.ConclusionOur results show a potent anti-inflammatory and antinociceptive effect of P-317 in mouse models of colitis upon activation of opioid receptors. The unique bioavailability of P-317 after oral administration suggests that it is a promising drug candidate for future treatment of IBD.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , ,