Article ID Journal Published Year Pages File Type
2012010 Pharmacological Reports 2015 5 Pages PDF
Abstract

BackgroundUrocortin (UCN) is a newly identified vascular-active peptide that has been shown to reverse cardiovascular remodeling and improve left ventricular (LV) function. The effects and mechanism of urocortin 2 (UCN2) in vivo on the electrical remodeling of left ventricle and the hemodynamics of hypertensive objectives have not been investigated.MethodsUCN2 (1 μg/kg/d, 3.5 μg/kg/d or 7 μg/kg/d) was intravenously injected for 2 weeks and its effects on hemodynamics in spontaneously hypertensive rats (SHRs) observed. The whole-cell patch clamp technique was used to explore the effects of UCN2 on the electrical remodeling of left ventricular cardiomyocytes. The flow cytometry method was used to determine the content of fluorescence calcium in myocardium.ResultsUCN2 improved the systolic and diastolic function of SHRs as demonstrated by decreased left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), increased +dp/dtmax and −dp/dtmax and decreased cAMP level. UCN2 inhibited the opening of L-type calcium channel and decreased the calcium channel current of cardiomyocytes. In addition, UCN2 also decreased the contents of fluorescence calcium in SHR myocardium. However, astressin2-B (AST-2B), the antagonist of corticotropin-releasing factor receptor 2 (CRFR2), could reverse the inhibitory effects of UCN2 on calcium channel.ConclusionUCN2 can modulate electrical remodeling of the myocardium and hemodynamics in an experimental model of SHR via inhibition of L-type calcium channel and CRFR2 in cardiomyocytes.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,