Article ID Journal Published Year Pages File Type
2024870 Soil Biology and Biochemistry 2013 9 Pages PDF
Abstract

Tropical rain forests are known for their high biological diversity, but the effects of plant diversity on important ecosystem processes in this biome remain unclear. Interspecies differences in both the demand for nutrients and in foliar and litter nutrient concentrations could drive variations in both the pool sizes and fluxes of important belowground resources, yet our understanding of the effects and importance of aboveground heterogeneity on belowground biogeochemistry is poor, especially in the species-rich forests of the wet tropics. To investigate the effects of individual tree species on belowground biogeochemical processes, we used both field and laboratory studies to examine how carbon (C), nitrogen (N), and phosphorus (P) cycles vary under nine different canopy tree species – including three legume and six non-legume species – that vary in foliar nutrient concentrations in a wet tropical forest in southwestern Costa Rica. We found significant differences in belowground C, N and P cycling under different canopy tree species: total C, N and P pools in standing litter varied by species, as did total soil and microbial C and N pools. Rates of soil extracellular acid phosphatase activity also varied significantly among species and functional groups, with higher rates of phosphatase activity under legumes. In addition, across all tree species, phosphatase activity was significantly positively correlated with litter N/P ratios, suggesting a tight coupling between relative N and P inputs and resource allocation to P acquisition. Overall, our results suggest the importance of aboveground plant community composition in promoting belowground biogeochemical heterogeneity at relatively small spatial scales.

► We examine the effects of nine canopy tree species on belowground biogeochemistry. ► Litter and soil chemistry vary significantly among canopy tree species. ► Soil phosphatase activity varies by species and is positively correlated with litter N/P. ► Tropical tree species differentially affect belowground biogeochemistry.

Related Topics
Life Sciences Agricultural and Biological Sciences Soil Science
Authors
, , , ,