Article ID Journal Published Year Pages File Type
2025289 Soil Biology and Biochemistry 2011 9 Pages PDF
Abstract

Retention of tannins, produced by plants, could be important for managing soil organic matter and nutrient cycling. However, we know little about the comparative retention of different classes of tannins and related compounds or if soils have a maximum storage capacity for them. To address these questions, forest, and pasture loam soils, collected at 0–5 cm (surface) and 10–20 cm (subsurface), were repeatedly treated with water (Control) or solutions containing condensed and hydrolyzable tannins or related phenolic subunits (10 mg g−1 soil). Treatments included a polymeric flavonoid-based procyanidin from sorghum, catechin, tannic acid, β-1,2,3,4,6-penta-O-galloyl-d-glucose (PGG), gallic acid, and methyl gallate. After each application, soluble-C in supernatants was determined by oxidative-combustion infrared analysis and retention of treatment-carbon by soil was calculated as the difference between added and recovered soluble-C. An interaction between soil depth and treatment was evident through all applications with highest retention of both hydrophobic (PGG) and hydrophilic (procyanidin) tannins, compared to other phenolic compounds. For all treatments except gallic acid and methyl gallate, higher sorption occurred in surface soil, which contained more organic matter than subsurface soil. With each successive application, less additional treatment-C was retained by soil and the amount of C remaining in supernatants was correlated with the presence of phenolic substances. Cumulative retention by surface soil was more than 10.3, 8.5 and 6.4 mg C g−1 soil for PGG, tannic acid, and procyanidin, several times higher than the other compounds. Soluble-C extracted from treated soil, with cool water (23 °C), was 1–2 orders of magnitude greater than Control samples and highly correlated with Prussian Blue (PB) phenolics, indicating some retained treatment-C was only weakly held on the soil. The final extraction, with hot water (80 °C), removed more soluble-C, particularly from surface samples, that contained fewer PB phenolics per unit soluble-C than cool water extracts. After all extractions more than 85% of sorbed procyanidin-C was retained by samples compared to 81% of methyl gallate, 79% of PGG, 74% of tannic acid, 50% of catechin, and 40% of the gallic acid. Total C, measured in soil after all extractions, was close to expected values, confirming tannins and phenolic compounds had remained in soil and were not otherwise lost. Cation exchange capacity was increased about 30% in subsurface and forest samples by PGG, a hydrolyzable tannin, but decreased by 30% and 35% in surface and pasture soil, respectively, by its monomer, gallic acid.

► Soil retained treatments of tannins more strongly than related non-tannin subunits. ► With each successive application, less additional treatment-C was retained by soil. ► Cumulative retention was generally greater for surface soil than subsurface soil. ► Some retained treatment-C was only weakly held on the soil. ► Soil CEC was increased by a tannin, but decreased by its monomer.

Related Topics
Life Sciences Agricultural and Biological Sciences Soil Science
Authors
, , ,