Article ID Journal Published Year Pages File Type
2025345 Soil Biology and Biochemistry 2008 13 Pages PDF
Abstract

Vegetational changes during the restoration of cutover peatlands leave a legacy in terms of the organic matter quality of the newly formed peat. Current efforts to restore peatlands at a large scale therefore require low cost and high throughput techniques to monitor the evolution of organic matter. In this study, we assessed the merits of using Fourier transform infrared (FTIR) spectra to predict the organic matter composition in peat samples at various stages of peatland regeneration from five European countries. Using predictive partial least squares (PLS) analyses, we were able to reconstruct peat C:N ratio and carbohydrate signatures with reasonable accuracy, but not the micromorphological composition of vegetation remains. Despite utilising different size fractions, both carbohydrate (<200 μm fraction) and FTIR (bulk soil) analyses report on the composition of plant cell wall constituents in the peat and therefore essentially reveal the composition of the parent vegetational material. The accuracy of the FTIR-based PLS models for C:N ratios and carbohydrate signatures was adequate to allow for their use as initial screening tools in the evaluation of the present and future organic matter composition of peat during monitoring of restoration efforts.

Related Topics
Life Sciences Agricultural and Biological Sciences Soil Science
Authors
, , , , , , , , ,