Article ID Journal Published Year Pages File Type
2025368 Soil Biology and Biochemistry 2010 7 Pages PDF
Abstract
In previous work, Variovorax paradoxus strain HB44, next to Burkholderia terrae BS001 and Dyella japonica BS003, were found to be selected in the mycosphere of the tricholomataceous fungi Laccaria proxima and Lyophyllum sp. strain Karsten in an acid soil denoted G. V. paradoxus HB44 showed poor survival in G bulk soil, irrespective of prior soil sterilization, and this poor survival also occurred for B. terrae BS001 and D. japonica BS003. In contrast, the survival rate of strain HB44 in two other soils, with pH values > 5.5, was significantly raised. Also, significantly enhanced strain HB44 survival in G soil was found if the pH was raised to 5.5 or 6.5, and it was even shown to grow (in the presence of the exogenous carbon source glycerol) at such pH values in the sterile G soil. This behaviour was similar to that of the V. paradoxus type strain. Strikingly, Lyophyllum sp. strain Karsten, when colonizing the sterilized G soil, significantly raised the soil pH from about 4.6 to ≥5.0. The pH raise was dependent on time, hyphal development, as well as on initial soil pH, but was consistent throughout. The modulated soil pH conditions were shown to be permissive for the survival and growth of strain HB44, and this was extended to strains BS001 and BS003. These findings corroborate the hypothesis that L. sp. strain Karsten provides a suitable habitat for acid-sensitive strains like HB44, BS001 and BS003 in its mycosphere in acid soil, which is strongly defined by the establishment of a growth-permissive pH.
Related Topics
Life Sciences Agricultural and Biological Sciences Soil Science
Authors
, , , ,