Article ID Journal Published Year Pages File Type
2027181 Soil Biology and Biochemistry 2006 10 Pages PDF
Abstract

Common agricultural practices, e.g. soil tillage and organic amendment, may affect field earthworm communities considerably. However, there is little data to show how long the changes persist after a certain action. The effect of peat, commonly used in Finland to improve the horticultural soil structure, on key soil organisms is also largely unknown. Earthworm abundance and microbial biomass were studied in a strawberry field experiment (soil type silty clay) with a history of different crops (strawberry, timothy, caraway, rye, turnip rape, fiddleneck, onion and buckwheat) and peat treatments. Sampling was carried out after three years of perennial cropping of strawberry. Half of the area was peat-amended twice three years apart. The earthworm community consisted mainly of Aporrectodea caliginosa and Lumbricus terrestris. Soil peat amendment almost doubled the number of endogeic A. caliginosa, but had no effect on the anecic L. terrestris. The effect of cropping history on earthworms diminished after three years of strawberry cropping. Only the positive effect of caraway on juvenile Lumbricus spp. was detectable three years after its cropping had been finished. However, some crops had secondary effects on the earthworm distribution without significant influence on their numbers while they were grown, e.g. high numbers of A. caliginosa were recorded from soil with a history of timothy ley. The effect of strawberry cropping was contradictory: six years of continuous strawberry cropping decreased the number of the anecic L. terrestris, but during the last three years on strawberry, the proportion of L. terrestris increased from 6% to 40% in the experimental area with a concomitant great drop in the number of A. caliginosa. The role of different agricultural practices (no tillage, mulching, inter-row grass cover and pesticides) is discussed. The crop-induced changes persisted in the microbial biomass for three years (onion cropping reduced microbial biomass C), but soil amendment had no effect on microbes. The abundance of A. caliginosa was associated with soil organic C, but not with soil microbial biomass.

Related Topics
Life Sciences Agricultural and Biological Sciences Soil Science
Authors
, , , ,