Article ID Journal Published Year Pages File Type
2043423 Current Biology 2010 8 Pages PDF
Abstract

The evolution of phenotype is often based on changes in gene expression rather than changes in protein-coding sequence. Gene expression is controlled by complex networks of interacting regulators that act through a variety of biochemical mechanisms. Perturbation of these networks can have profound effects on the fitness of organisms. This highlights an important challenge: the investigation of whether the mechanisms and network architectures we observe in Nature evolved in response to selective pressure — and, if so, what that pressure might have been — or whether the architectures are a result of non-adaptive forces. Synthetic biologists aim to construct artificial genetic and biological systems to increase our understanding of Nature as well as for a number of biotechnological applications. In this review, I will highlight how engineering ‘synthetic’ control of gene expression provides a way to test evolutionary hypotheses. Synthetic biology might allow us to investigate experimentally the evolutionary paths not taken by extant organisms.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
,