Article ID Journal Published Year Pages File Type
2044327 Current Biology 2006 6 Pages PDF
Abstract

SummaryRNA interference (RNAi) is a conserved silencing mechanism that has widespread roles in RNA degradation, translational repression, and the epigenetic control of chromatin structure [1]. In fission yeast, heterochromatin assembly requires RNAi machinery and is initiated by small interference RNAs (siRNAs) derived from heterochromatic regions and by the RNA-induced transcriptional silencing (RITS) complex 2, 3, 4, 5, 6 and 7. Although recent studies have been successful in uncovering the functions of effector complexes in the RNAi pathway 4, 5, 8, 9 and 10, exactly how heterochromatic siRNAs are processed and function in assembling heterochromatin remains unclear. In this study we focused on a conserved ribonuclease, Eri1, which was originally identified as a negative regulator of RNAi in C. elegans [11], and show the importance of the Eri1 protein in RNAi-mediated heterochromatin assembly in fission yeast. Eri1 specifically degrades double-stranded siRNAs through two functional domains and represses the accumulation of cellular siRNAs in vivo. Deletion of eri1+ causes an increase in siRNAs associated with the RITS complex and enhances heterochromatic silencing, which is accompanied by increased levels of histone H3-K9 methylation and the Swi6 protein. Our findings suggest that the fission yeast Eri1 controls the accumulation of heterochromatic siRNAs and negatively regulates the RNAi-mediated heterochromatin assembly.

Keywords
Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , ,