Article ID Journal Published Year Pages File Type
2045179 Current Biology 2006 9 Pages PDF
Abstract

SummaryBackgroundAt the onset of embryogenesis, key developmental regulators called determinants are activated asymmetrically to specify the body axes and tissue layers. In C. elegans, this process is regulated in part by a conserved family of CCCH-type zinc finger proteins that specify the fates of early embryonic cells. The asymmetric localization of these and other determinants is regulated in early embryos through motor-dependent physical translocation as well as selective proteolysis.ResultsWe show here that the CCCH-type zinc finger protein OMA-1 serves as a nexus for signals that regulate the transition from oogenesis to embryogenesis. While OMA-1 promotes oocyte maturation during meiosis, destruction of OMA-1 is needed during the first cell division for the initiation of ZIF-1-dependent proteolysis of cell-fate determinants. Mutations in four conserved protein kinase genes—mbk-2/Dyrk, kin-19/CK1α, gsk-3, and cdk-1/CDC2—cause stabilization of OMA-1 protein, and their phenotypes are partially suppressed by an oma-1 loss-of-function mutation. OMA-1 proteolysis also depends on Cyclin B3 and on a ZIF-1-independent CUL-2-based E3 ubiquitin ligase complex, as well as the CUL-2-interacting protein ZYG-11 and the Skp1-related proteins SKR-1 and SKR-2.ConclusionsOur findings suggest that a CDK1/Cyclin B3-dependent activity links OMA-1 proteolysis to completion of the first cell cycle and support a model in which OMA-1 functions to prevent the premature activation of cell-fate determinants until after they are asymmetrically partitioned during the first mitosis.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , , , , , ,