Article ID Journal Published Year Pages File Type
2048563 FEBS Letters 2009 8 Pages PDF
Abstract

The SNF1/AMPK/SnRK1 complex is an intracellular energy sensor composed of three types of subunits: the SnRK1 kinase and two regulatory, non-catalytic subunits (designated β and γ). We have previously described an atypical plant γ-subunit, AKINβγ, which contains an N-terminal tail similar to the so-called KIS domain normally present in β-subunits. However, it is not known whether AKINβγ normally associates with endogenous SnRK1 complexes in vivo, nor how its unique domain structure might contribute to SnRK1 function. Here, we present evidence that maize AKINβγ is an integral component of active SnRK1 complexes in plant cells. Using complementary methodological approaches, we also show that AKINβγ associates through homomeric interactions mediated by both, the γ- and, unexpectedly, the KIS/CBM domain.Structured summaryMINT-7040005: AKIN (uniprotkb:B4FX20) and AKIN (uniprotkb:B4FX20) physically interact (MI:0914) by chromatography technologies (MI:0091)MINT-7039992: AKIN (uniprotkb:B4FX20) and AKIN (uniprotkb:B4FX20) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)MINT-7040024, MINT-7040044, MINT-7040067: AKIN (uniprotkb:B4FX20) and AKIN (uniprotkb:B4FX20) bind (MI:0407) by pull down (MI:0096)MINT-7039978: SnRK1 (uniprotkb:Q8H1L5) and AKIN (uniprotkb:B4FX20) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)

Keywords
Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, , , , ,