Article ID Journal Published Year Pages File Type
2049338 FEBS Letters 2009 6 Pages PDF
Abstract

In the present study we show in the Xenopus laevis expression system that the proton-coupled amino acid transporter 1 (PAT1, SLC36A1) is glycosylated at asparagine residues N174, N183 and N470. To determine the functional role of N-glycosylation, glycosylation-deficient mutants were analyzed by two-electrode voltage-clamp measurements after expression in X. laevis oocytes. Single replacements of asparagine residues had no effect on transport activity. However, multiple substitutions resulted in a decreased transport rate, leaving Kt unchanged. Immunofluorescence localisation revealed a diminished plasma membrane expression of glycosylation-defective mutants. This indicates that N-glycans are not required for transport function, but are important for membrane targeting.

Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, , , , , , ,