Article ID Journal Published Year Pages File Type
2050943 FEBS Letters 2008 6 Pages PDF
Abstract

Halomonas nucleoside diphosphate kinase (HaNDK) forms a dimeric assembly and Pseudomonas NDK (PaNDK) forms a tetrameric assembly. The mutation of Glu134 to Ala in HaNDK resulted in the conversion of the native dimeric structure to the tetramer assembly. Conversely, the mutation of Ala134 to Glu in PaNDK lead to the conversion from the tetramer to the dimer assembly, indicating that a single amino acid substitution at position 134 results in an alteration of the oligomeric structure of NDK. By modeling the structure of HaNDK and PaNDK based on the crystal structure of Myxococcus NDK, we showed that Glu134 exerts sufficient repulsive forces to disrupt the dimer–dimer interaction and prevent the formation of the tetramer.

Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, , , , , , ,