Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2051622 | FEBS Letters | 2007 | 7 Pages |
To better understand the mode of action of the antimicrobial peptide PST11-RK, we investigated its (1) bactericidal kinetics, (2) ability to induce bacterial membrane depolarization, (3) ability to bind to liposomes, (4) cis/trans prolyl isomerization, (5) lipid binding kinetics and (6) translocation across lipid bilayers. Our findings suggest that PST11-RK acts mainly by collapsing the cytoplasmic membrane potential; it first attaches to the membrane via cationic C- and N-terminal residues and then inserts its central hydrophobic residues into the lipid interior. In addition, it seems likely that cis/trans isomerization facilitates the translocation of PST11-RK across the lipid bilayer, where it may interact with secondary intracellular targets.