Article ID Journal Published Year Pages File Type
2052970 FEBS Letters 2006 5 Pages PDF
Abstract

The internal guiding sequence (IGS) is normally located at the 5′ end of trans-splicing ribozymes that are derived from the Tetrahymena group I intron, and is required for the recognition of substrate RNAs and for trans-splicing reactions. Here, we separated the Tetrahymena group I intron at the L2 loop to produce two fragments: the IGS-containing substrate, and the IGS-lacking ribozyme. We show here that two fragments can complex not through the IGS interaction but under the guidance of appended interacting nucleotides, and perform trans-splicing. The splicing reactions took place both in vitro and in mammalian cells, and the spliced mRNA product from the self-assembled ribozyme complex can be translated into functional proteins in vivo. The splicing efficiency was dependent on the length of appending nucleotides.

Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, ,