Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2053184 | FEBS Letters | 2005 | 7 Pages |
A murine lung alveolar carcinoma cell line (WT-Line 1) and its equally tumorigenic but non-malignant derivative transduced with a dominant negative inhibitor of NF-κB (mI-κB-Line 1), were profiled on the Affymetrix® 19 000 gene array platform. Two differentially expressed gene clusters were identified and integrated into a functional model. The downregulation of anti-oxidant defenses, in mI-κB-Line 1 cells, correlates with high levels of reactive oxygen species (ROS) and ROS damage to cellular macromolecules while the upregulation of metabolic nuclear receptors correlates with an adaptive/survival response, which involves a shift in energy metabolism toward β-oxidative respiration. Accordingly, mI-κB-Line 1 cells are markedly sensitized to pharmacologic inhibition of β-oxidative respiration. These findings are indicative of compensatory changes that could undermine anti-cancer therapies targeting NF-κB.