Article ID Journal Published Year Pages File Type
2055890 Journal of Plant Physiology 2014 8 Pages PDF
Abstract

SummaryCork oak (Quercus suber L.) is a research priority in the Mediterranean area and because of cork oaks’ distribution these stands are experiencing daily stress. Based on projections of intensifying climate change and considering the key role of exploring the recovery abilities, cork oak seedlings were subjected to a cumulative temperature increase from 25 °C to 55 °C and subsequent recovery. CO2 assimilation rate, chlorophyll fluorescence, anthocyanins, proline and lipid peroxidation were used to evaluate plant performance, while the relative abundance of seven genes encoding for proteins of cork oak with a putative role in thermal/stress regulation (POX1, POX2, HSP10.4, HSP17a.22, CHS, MTL and RBC) was analyzed by qPCR (quantitative Polymerase Chain Reaction). A temperature change to 35 °C showed abundance alterations in the tested genes; at 45 °C, the molecular changes were associated with an antioxidant response, possibly modulated by anthocyanins. At 55 °C, HSP17a.22, MTL and proline accumulation were evident. After recovery, physiological balance was restored, whereas POX1, HSP10.4 and MTL abundances were suggested to be involved in increased thermotolerance. The data presented here are expected to pinpoint some pathways changes occurring during such stress and further recovery in this particular Mediterranean species.

Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , , , , , ,