Article ID Journal Published Year Pages File Type
2055894 Journal of Plant Physiology 2014 10 Pages PDF
Abstract

HKT1 has been shown to be essential in Na+ homeostasis in plants. In this paper, we report the analysis of Na+ accumulation in different plant organs of two tomato species with contrasting salt tolerances: Solanum lycopersicum and Solanum pennellii. Furthermore, we relate these differences in Na+ accumulation between the two species to the differences in HKT1;2 transport kinetics and HKT1;2 expression. S. lycopersicum showed “Na+ excluder” behaviour, whereas S. pennellii showed “Na+ includer” behaviour. SlHKT1;2 expression, in contrast to SpHKT1;2 expression showed a significant effect of NaCl treatment, especially stems had a high increase in SlHKT1;2 expression. SlHKT1;2 promoter-GUS reporter gene analysis showed that SlHKT1;2 is expressed in the vasculature surrounding the roots and shoots of transformed Arabidopsis plants. In this paper, we present HKT1;2 protein sequences of both tomato species and provide evidence that both SlHKT1;2 and SpHKT1;2 are Na+ transporters. Our kinetic studies showed that SpHKT1;2, in comparison with SlHKT1;2, had a lower affinity for Na+. This low affinity of SpHKT1;2 correlated with higher xylem Na+ and higher accumulation of Na+ in stems and leaves of S. pennellii. Our findings demonstrate the importance of the understanding of transport characteristics of HKT1;2 transporters to improve the understanding of Na+ homeostasis in plants.

Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , ,