Article ID Journal Published Year Pages File Type
2061456 Pedobiologia 2012 8 Pages PDF
Abstract

Alteration of plant lignin concentration is expected to affect the C mineralization of crop residues. Mutations of single genes involved in biosynthesis of secondary cell walls such as KNOTTED ARABIDOPSIS THALIANA 7 (KNAT7), PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) also known as MYB75, and cinnamoyl CoA reductase 1 (CCR1) coding genes could change lignin concentration in specific plant tissues. This study assessed the CO2–C production of soil amended with stem and root tissues of down-regulated (k/o) and over expression (o/x) KNAT7 and MYB75 and the CCR1 k/o mutant lines of A. thaliana. KNAT7 k/o and MYB75 k/o were grown in two different environmental conditions (two cohorts) in the greenhouse. Oven dried, finely ground (<0.5 mm) stem and root residues underwent biochemical analysis, then were mixed separately with sandy loam or clay loam soil to assess CO2–C production under controlled laboratory conditions for 63 days. Compared to wild ecotypes, C:N ratio and acid unhydrolyzable fraction (AUF) concentration tended to be higher in stem residues of KNAT7 k/o and MYB75 k/o mutant lines. The C:N ratio was lower in stem and roots of CCR1 k/o line, and the AUF concentration was lower in CCR1 k/o stem residues than in the wild ecotypes. Hemicelluloses were lower in stem residues of KNAT7 k/o and MYB75 k/o (first cohort) than their wild ecotypes. Cumulative CO2–C production was lower in soil amended with stem residues of KNAT7 k/o (first cohort) and MYB75 k/o (first and second cohorts). CCR1 k/o stem tissues caused higher CO2–C production from soil. After 63 days incubation, the acid/aldehyde ratio (Ad/Al) of vanillin (V) and syringyl (S) lignin monomers of soil was higher for stem amended CCR1 k/o and lower for stem amended MYB75 k/o soils as compared to their wild ecotypes. Generally root residues caused lower CO2–C production from soil than stem residues. There was no difference in CO2–C production for root residues between mutant lines and their wild ecotypes. In conclusion, KNAT7 k/o, MYB75 k/o and CCR1 k/o mutations resulted in altered C:N ratio and resistant compounds (i.e., AUF) especially in stems, and these alterations in residue chemistry influenced CO2–C production and also lignin degradation in soil.

Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , , ,