Article ID Journal Published Year Pages File Type
2075229 Animal Reproduction Science 2006 9 Pages PDF
Abstract
The leopard cat (Prionailurus bengalensis), a member of the felidae family, is a threatened animal in South Korea. In terms of protecting endangered felids, nuclear transfer (NT) is a potentially valuable technique for assuring the continuation of species with dwindling numbers. In the present experiment, nuclear and microtubule remodeling and the in vitro developmental potential of enucleated domestic cat oocytes reconstructed with nuclei of somatic cells from either domestic cat fibroblast (DCF) or leopard cat fibroblast (LCF) were evaluated. Microtubule aster is allocated to de-condensed chromatin following nuclear transfer (3 h after activation) of fibroblast cells from both domestic and leopard cats, suggesting the introduction of a somatic cell centrosome. The transferred fibroblast nuclei formed a large, swollen, pronuclear-like structure in most reconstructed oocytes, in the cat or leopard cat. At 18 h following nuclear transfer, mitosis occurred, and according to the photo (F) it appears that spindle microtubules and two asters were observed. The percentages of blastocyst formation from nuclear transfer embryos derived from domestic cat fibroblasts (4/46, 8.6%) were not significantly different than those for nuclear transfer embryos constructed with leopard cat fibroblasts (4/52, 7.6%). These results indicate that nuclear and microtubule remodeling processes and in vitro developmental ability are similar in reconstructed cat oocytes following transfer of nuclei from either domestic or leopard cats.
Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , , , ,