Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2096563 | Theriogenology | 2007 | 6 Pages |
Abstract
To investigate the effects of water-soluble vitamin supplementation for IVM/IVC of porcine oocytes and evaluate maturation and developmental capacity in vitro, porcine cumulus oocyte complexes (COCs) was matured in NCSU-23-based medium with water-soluble vitamins for 44Â h and then cultured in PZM-3 for 7 days following activation. The COCs were allocated into five treatment groups and matured in various concentrations of MEM vitamins (control, 0.05, 0.1, 0.2, 0.4, and 1Ã). Metaphase II plates of the cumulus-free oocytes were observed following Hoechest 33258 staining. The COCs were allocated into four treatment groups, matured in various concentrations of MEM vitamins (control, 0.05, 0.1, 0.2, and 0.4Ã) and cultured in PZM-3 following activation. Also, COCS were matured without MEM vitamins and cultured in PZM-3 with various concentrations (control, 0.1, 0.4, 1.0, and 2.0Ã) of MEM vitamins. Furthermore, 2Â ÃÂ 2 factorial (IVM/IVC) experiments were performed in IVM medium with or without 0.05Ã MEM vitamins and IVC medium with or without 0.4Ã MEM vitamins to examine the in vitro development of parthenogenetic embryos. Maturation rates of COCs treated with MEM vitamins did not differ significantly among groups. However, compared to the control group, oocytes matured with the addition of 0.05Ã MEM vitamins developed to blastocysts at a higher percentage (PÂ <Â 0.05) following activation and culture in PZM-3 without MEM vitamins. Total cell number of blastocysts was significantly higher in the 0.05Ã group. Addition of 0.4Ã MEM vitamins decreased (PÂ <Â 0.05) cleavage and blastocyst developmental rates compared with 0.05Ã MEM vitamins-treated group. In contrast, addition of vitamins to PZM-3 medium for in vitro culture of activated porcine oocytes did not affect development. In conclusion, addition of a low concentration of MEM vitamins to IVM medium for porcine oocytes enhanced subsequent development and improved embryo quality.
Related Topics
Life Sciences
Agricultural and Biological Sciences
Animal Science and Zoology
Authors
Kenji Naruse, Hong Rye Kim, Young Min Shin, Suk Min Chang, Hye Ran Lee, Chang Sik Park, Dong Il Jin,