Article ID Journal Published Year Pages File Type
2097614 Theriogenology 2013 8 Pages PDF
Abstract

We sought to determine the effects of active anti-GnRH immunization on GnRH synthesis in the hypothalamus. Adult male rats (n = 36) were randomly and equally allocated into three groups: Control (no treatment), surgically castrated, or immunized against 50 μg D-Lys6-GnRH-tandem-dimer peptide conjugated to ovalbumin in Specol adjuvant at 12 week of age (with a booster 8 week later). Blood samples (for antibody titers and hormone concentrations) were collected at 2-week intervals until rats were killed (20 week). Compared with intact controls, immunocastration reduced (P < 0.05) serum concentrations of testosterone, LH, and FSH, and GnRH content in the median eminence, reduced the weight of the hypohysis (P < 0.01), and induced testicular atrophy (suppression of spermatogenesis). Furthermore, mRNA expression of GnRH in the hypothalamus, GnRH receptor, LH-β and FSH-β in the pituitary, LH receptor and FSH receptor in the testes, and genes in sex steroid feedback loops (androgen receptor [AR], kisspeptin encoded gene (Kiss-1), and kisspeptin receptor (GPR54) in the hypothalamus were decreased in immunocastrated rats compared with intact controls (P < 0.05). Similarly, surgical castration reduced GnRH in the median eminence as well as mRNA expression of GnRH, AR, Kiss-1, and GPR54 in the hypothalamus (P < 0.05). We concluded that anti-GnRH immunization in adult rats reduced synthesis of hypothalamic GnRH by decreasing androgen–AR–Kisspeptin–GPR54 signaling pathways, and caused dysfunction of the pituitary–testicular axis, thereby suppressing spermatogenesis, resulting in testicular atrophy.

Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , , , ,