Article ID Journal Published Year Pages File Type
2168454 Cryobiology 2011 14 Pages PDF
Abstract

Typical mathematical modeling of cryopreservation of cell suspensions assumes a thermodynamic equilibrium between the ice and liquid water in the extracellular solution. This work investigates the validity of this assumption by introducing a population balance approach for dynamic extracellular ice formation (EIF) in the absence of any cryo-protectant agent (CPA). The population balance model reflects nucleation and diffusion-limited growth in the suspending solution whose driving forces are evaluated in the relevant phase diagram.This population balance description of the extracellular compartment has been coupled to a model recently proposed in the literature [Fadda et al., AIChE Journal, 56, 2173–2185, (2010)], which is capable of quantitatively describing and predicting internal ice formation (IIF) inside the cells. The cells are characterized by a size distribution (i.e. through another population balance), thus overcoming the classic view of a population of identically sized cells.From the comparison of the system behavior in terms of the dynamics of the cell size distribution it can be concluded that the assumption of a thermodynamic equilibrium in the extracellular compartment is not always justified. Depending on the cooling rate, the dynamics of EIF needs to be considered.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , ,