Article ID Journal Published Year Pages File Type
2169307 Cryobiology 2008 6 Pages PDF
Abstract

Vitrification is proposed to be the best way for the cryopreservation of organs. The glass transition temperature (Tg) of vitrification solutions is a critical parameter of fundamental importance for cryopreservation by vitrification. The instruments that can detect the thermodynamic, mechanical and dielectric changes of a substance may be used to determine the glass transition temperature. Tg is usually measured by using differential scanning calorimetry (DSC). In this study, the Tg of the glycerol-aqueous solution (60%, wt/%) was determined by isothermal-isobaric molecular dynamic simulation (NPT-MD). The software package Discover in Material Studio with the Polymer Consortium Force Field (PCFF) was used for the simulation. The state parameters of heat capacity at constant pressure (Cp), density (ρ), amorphous cell volume (Vcell) and specific volume (Vspecific) and radial distribution function (rdf) were obtained by NPT-MD in the temperature range of 90–270 K. These parameters showed a discontinuity at a specific temperature in the plot of state parameter versus temperature. The temperature at the discontinuity is taken as the simulated Tg value for glycerol–water binary solution. The Tg values determined by simulation method were compared with the values in the literatures. The simulation values of Tg (160.06–167.51 K) agree well with the DSC results (163.60–167.10 K) and the DMA results (159.00 K). We drew the conclusion that molecular dynamic simulation (MDS) is a potential method for investigating the glass transition temperature (Tg) of glycerol–water binary cryoprotectants and may be used for other vitrification solutions.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , ,