Article ID Journal Published Year Pages File Type
2178989 European Journal of Cell Biology 2006 11 Pages PDF
Abstract

Small Rho family GTPases are involved in regulation of actin cytoskeleton dynamics. These molecular switches are themselves mainly controlled by specific GTPase-activating proteins (GAPs) and guanine-nucleotide exchange factors (GEFs). We have cloned and initially characterized a novel putative RhoGEF from Dictyostelium discoideum. The predicted 135-kDa protein displays a unique domain organization in its N-terminus by harboring two type3 calponin homology (CH) domains followed by a single type1 CH domain. The C-terminal region encompasses a diffuse B-cell lymphoma homology/pleckstrin homology tandem domain that is typically found in RhoGEFs. We therefore refer to this protein as Trix (triple CH-domain array exchange factor). A recombinant N-terminal region of Trix carrying all three CH domains binds to F-actin and bundles actin filaments. Trix-null mutants are viable and display only subtle defects when compared to wild-type cells with the exception of a substantial decrease in exocytosis of a fluid-phase marker. GFP fusions with the full-length protein or the N-terminal part containing all three CH domains revealed that Trix localizes to the cortical region and strongly accumulates on late endosomes. Our results suggest that Trix is specifically involved in a Rho GTPase-signaling pathway that is required for regulation of the actin cytoskeleton during exocytosis.

Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, , ,