Article ID Journal Published Year Pages File Type
2179250 European Journal of Cell Biology 2008 13 Pages PDF
Abstract

The amoeba Dictyostelium discoideum possesses genes for 13 different kinesins. Here we characterize DdKif3, a member of the Kinesin-1 family. Kinesin-1 motors form homodimers that can move micrometer-long distances on microtubules using the energy derived from ATP hydrolysis. We expressed recombinant motors in Escherichia coli and tested them in different in vitro assays. Full-length and truncated Kif3 motors were active in gliding and ATPase assays. They showed a strong dependence on ionic strength. Like the full-length motor, the truncated DdKif3-592 motor (aa 1–592; comprising motor domain, neck, and partial stalk) reached its maximum speed of around 2.0 μm s−1 at a potassium acetate concentration of 200 mM. The shortened DdKif3-342 motor (aa 1–342; comprising motor domain, partial neck) showed a high ATP turnover, comparable to that of the fungal Kinesin-1, Nkin. Results from the duty cycle calculations and gliding assays indicate that DdKif3 is a processive motor. A GFP-fusion protein revealed a mainly cytoplasmic localization of DdKif3. Immunofluorescence staining makes an association with the endoplasmic reticulum or mitochondria unlikely. Despite a similar phylogenetic distance to both metazoa and fungi, in terms of its biochemical properties DdKif3 revealed a closer similarity to fungal than animal kinesins.

Related Topics
Life Sciences Agricultural and Biological Sciences Plant Science
Authors
, , , , , , ,