Article ID Journal Published Year Pages File Type
2179609 Flora - Morphology, Distribution, Functional Ecology of Plants 2014 11 Pages PDF
Abstract

The present study was undertaken to characterize leaf gas exchange physiology and photoacclimation characteristics in drought-stressed mulberry cultivar V1 (Morus indica L.) grown under the hot semi-arid steppe agroclimate of Southern India. The experiment was conducted in year 2009 during peak summer months (April–June). Mulberry plants, grown in short rotation coppice system, were subjected to two irrigation regimes: the control plot received a regulated full-rate irrigation (weekly 2–3 times) and the drought-stressed plot received a regulated deficit irrigation (irrigated only once in a fortnight). Net photosynthesis, transpiration, stomatal conductance, leaf water potential (ΨL) and photosytem-II (PS II) efficiency were examined. In spite of significant down-regulation in leaf gas exchange, the drought-stressed stands still exhibited a considerable rate of photosynthesis along with significant concomitant decrease in ΨL, more conspicuously during midday (12.00–13.00 h) depicting rather low stomatal control on ΨL, a behavior characterized as ‘anisohydric’. The PS II structural and functional integrity was well-maintained, even in the drought-stressed plants. However, apparent photoacclimatory changes were recorded in drought-exposed stands including decrease in electron transport and enhanced thermal dissipation from PS II. Overall, our data demonstrate some of the important driving leaf-level mechanisms adopted by mulberry cultivar V1 to tolerate drought stress and sustain photosynthesis.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, ,