Article ID Journal Published Year Pages File Type
2179848 Flora - Morphology, Distribution, Functional Ecology of Plants 2012 10 Pages PDF
Abstract

Changes in the antioxidant defense system and proline accumulation were examined at different growth stages (vegetative, boot and reproductive) in plants of two hexaploid spring wheat cultivars (S-24, salt tolerant; MH-97, salt sensitive), grown in hydroponics and salinity-affected with 0, 50, 100 and 150 mM of NaCl. Salt stress provoked a marked decline in plant dry mass and ascorbic acid contents, and increased proline, total soluble proteins and H2O2 contents in both wheat cultivars at all growth stages. However, higher accumulation of proline and H2O2 contents was recorded at the vegetative and boot stages, respectively, in both wheat cultivars. Salt stress caused a consistent rise in the activities of some key antioxidant enzymes (CAT, SOD, POD, and APX) at all growth stages only in the salt tolerant cultivar S-24, whereas such pattern of enhanced activities of enzymatic antioxidants in cv. MH-97 was found only at the vegetative stage under saline regimes. Maximum activities of various enzymatic antioxidants were observed at the vegetative stage in both wheat cultivars under varying external salt treatments. The results showed that high salinity tolerance of cv. S-24, as manifested by lower decrease in its dry matter under salt stress, was associated with higher activities of antioxidant enzymes, increased accumulation of proline, and lower levels of H2O2, as compared with cv. MH-97 at all growth stages under saline regimes.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , ,