Article ID Journal Published Year Pages File Type
2180251 Flora - Morphology, Distribution, Functional Ecology of Plants 2008 8 Pages PDF
Abstract

Wood and pith of 1–2-year-old stems of three woody species with different life strategies common in the Mediterranean basin were studied during the year regarding (i) the occurrence of green plastids, (ii) their maximal photosystem II photochemical efficiency (Fv/Fm) and (iii) their starch content. Green plastids were identified from the red chlorophyll auto-fluorescence under epi-fluorescence microscope, Fv/Fm was estimated using imaging-PAM fluorometry and starch content was recorded under bright field microscope after iodine staining. The evergreen sclerophyll Nerium oleander, the summer deciduous Euphorbia acanthothamnos and the winter deciduous species Platanus orientalis were selected for the study.Epi-fluorescence microscopy revealed that (i) all species possess abundant green plastids in their wood ray and pith cells throughout the year. In the winter deciduous species chlorophyll fluorescence was found to be strong during the leafless period. By contrast, in the evergreen and the summer deciduous species chlorophyll fluorescence was found uniformly bright during the year; (ii) Fv/Fm value variation during the year seems to be species-specific: in the wood of N. oleander it remains unchanged whereas in the pith it is low during spring–summer; in both tissues of E. acanthothamnos Fv/Fm value reaches maximal value during spring and in P. orientalis during autumn; (iii) in N. oleander and E. acanthothamnos starch is accumulated during spring, whereas in P. orientalis starch content is high during winter.The scanning electron microscopy (SEM) investigation revealed that the stem epidermis of all three species lacks stomata and formation of lenticels is delayed. Provided that gas exchange is therefore minimized and that PSII photochemical efficiency of inner stem tissues is relatively high, it is further supported that green plastids of wood ray and pith cells may help toward the re-fixation of the internally respired CO2.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, ,