Article ID Journal Published Year Pages File Type
2180312 Flora - Morphology, Distribution, Functional Ecology of Plants 2006 15 Pages PDF
Abstract

The adaptive significance of leaf reddening, as it occurs during specific developmental stages or after stress, has puzzled biologists for more than a century. Theoretically, the accumulation of a non-photosynthetic pigment competing with chlorophylls for photon capture would impose a photosynthetic cost, which should be paid off by the benefits afforded by anthocyanins under some circumstances. Hence, the proposed hypotheses presume protective functions against excess light, UV-B radiation, reactive oxygen species, water stress (osmoregulation) and herbivory. The existing arguments in favor of an anti-oxidant, anti-UV-B and osmoregulatory role are confounded by the co-occurrence in leaves of other compounds having the same properties, not absorbing visible light, attaining much higher concentrations and, in some cases, having a more appropriate location to fulfill the ascribed functions. Moreover, the excess light hypothesis should take into account that anthocyanins mainly absorb green photons, which are used photosynthetically in deeper cell layers needing less photoprotection. The more ecological, anti-herbivore hypotheses, consider red leaf color as a signal denoting high defensive commitment, as a camouflage obscuring the green reflectance indicative of a healthy leaf and/or as a device undermining the folivorous insects camouflage. The anti-herbivore hypotheses have not been thoroughly tested, yet they are compatible with the known optical preferences of insects and their underlying physiology. Overall, although a multiplicity of potential roles can be argued, the primary role may depend on the reference system, i.e. species, developmental stage or specific biotic and abiotic stressors.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
,