Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2204221 | Tissue and Cell | 2006 | 11 Pages |
Development and fate of embryonic membranes in the silverfish Lepisma saccharina was examined throughout embryogenesis. The amnioserosal folds first arise as serosal folds that are completed by the later addition of the amnion from the embryo's margins as in archaeognaths. The close link between production of the amnion and formation of the folds should not be assigned to Dicondylia but to Pterygota as an autapomorphy. During fold formation, folding of embryonic membranes beneath the embryo is less extensive and the ventral cupping of the embryo plays a larger role comparable to that occurring in archaeognath embryos. In L. saccharina, the embryonic membrane pore (the amniopore) varies in its manner of closure, either by complete fusion of serosal folds or by formation of a serosal cuticular plug between them as in archaeognaths. Although, in many aspects of its embryogenesis, L. saccharina retains the primitiveness of archaeognaths, its amnioserosal folds persist and are well integrated into its embryogenesis as the amnioserosal fold-amniotic cavity system is established and as occurs in many pterygote embryos; this may be thus regarded as an autapomorphy of Dicondylia.