Article ID Journal Published Year Pages File Type
2393713 Domestic Animal Endocrinology 2012 10 Pages PDF
Abstract

Nodal, a member of the transforming growth factor-β superfamily, plays important roles in embryogenesis in vertebrates, including fish. However, the functional characterization of the fish nodal-related gene in nonembryonic cells is still unclear. In teleost, three nodal-related genes, nodal-related (ndr)1/squint, ndr2/cyclops, and ndr3/southpaw have been reported. In this study, a full-length cDNA for grass carp squint (gcSqt) was cloned, and its transcript was detected in the selected organs, including pituitary, brain, heart, head kidney, kidney, spleen, and gonad. To further define its functional role, recombinant grass carp squint (rgcSQT) was produced in Escherichia coli in a homodimer form. Furthermore, we examined the effects of rgcSQT on activin and its receptor gene expression with the use of grass carp pituitary cell as a model. Results showed that rgcSQT stimulated the mRNA expression of activin βA and βB subunit, as well as activin receptor ActRIB and ActRIIB. These findings not only contribute to the understanding of nonembryonic functions of nodal gene in fish, but they also provide new insight into the regulation of activin signaling in vertebrates.

Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , , , , ,