Article ID Journal Published Year Pages File Type
2415669 Agriculture, Ecosystems & Environment 2007 11 Pages PDF
Abstract

Arable land soils generally have lower organic carbon (C) levels than soils under native vegetation; increasing the C stocks through improved management is suggested as an effective means to sequester CO2 from the atmosphere. China's arable lands, accounting for 13% of the world's total, play an important role in soil C sequestration, but their potential to enhance C sequestration has not yet been quantitatively assessed. The C sequestration by agricultural soils is affected by many environmental factors (such as climate and soil conditions), biological processes (crop C fixation, decomposition and transformation), and crop and soil management (e.g. tillage and manure application). Estimation of the C sequestration potential requires the quantification of the combined effects of these factors and processes. In this study, we used a coupled remote sensing- and process-based ecosystem model to estimate the potential for C sequestration in agricultural soils of China and evaluated the sustai

Related Topics
Life Sciences Agricultural and Biological Sciences Agronomy and Crop Science
Authors
, , , ,