Article ID Journal Published Year Pages File Type
2423150 Aquaculture 2011 10 Pages PDF
Abstract

Within the context of fish oil replacement in aquaculture, the modification of fillet fatty acid make-up and the maximisation of omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA; namely eicosapentaenoic acid – EPA – 20:5n-3, and docosahexaenoic acid – DHA – 22:6n-3) deposition are attracting increasing interest. The present study investigated these aspects by testing fish oil and four different vegetable oils (selected for their extreme fatty acid composition: palm oil, olive oil, sunflower oil and linseed oil) in a feeding trial consisting of a grow-out and finishing period using juvenile Murray cod. Minimal/no effect on growth performance was recorded. The dietary treatment largely affected the fillet fatty acid make-up, which was to some extent, diluted by the finishing period. The overall fatty acid composition of the alternative oil used (i.e. saturated, monounsaturated and polyunsaturated fatty acids — SFA, MUFA and PUFA, respectively) was found to have a significant effect on the final n-3 LC-PUFA content of cultured fish. It was shown that MUFA, and to a lesser extent SFA, can have a form of “omega-3 sparing effect”, whereby an abundant availability of dietary MUFA and SFA can decrease the catabolism of n-3 LC-PUFA and result in a greater deposition rate of these health-promoting fatty acids into fish fillets.

Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , , , ,