Article ID Journal Published Year Pages File Type
2424409 Aquaculture 2009 10 Pages PDF
Abstract

Recirculating aquaculture systems (RAS) in land based fish tanks, where the fish tank effluent is biologically treated and then recirculated back to the fish tanks, offers a possibility for large scale ecologically sustainable fish production. In order to fully exploit the advantages of RAS, however, the water exchange should be as small as possible. This implies strong demands on the water treatment, e.g. the maintenance of an efficient nitrification, denitrification and organic removal. Because of the RAS complexity, though, dynamic simulations are required to analyze and optimize a plant with respect to effluent water quality, production and robustness. Here, we present a framework for integrated dynamic aquaculture and wastewater treatment modelling, where fish growth and evacuation rate models can be linked to state of the art dynamic wastewater treatment models through massbalance based waste characterization. It provides means to analyze, predict and explain RAS performance. Using this framework we demonstrate how a new and improved RAS configurations is identified.

Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , ,