Article ID Journal Published Year Pages File Type
2430667 Fish & Shellfish Immunology 2016 4 Pages PDF
Abstract

•The safety of G gene-deleted rVHSV-ΔG was evaluated.•The replication of wild-type VHSV in EPC cells was severely suppressed by rVHSV-ΔG.•The replication of IHNV and HIRRV was also inhibited by co-infection with rVHSV-ΔG.•rVHSV-ΔG has an ability to attenuate the disease progression caused by wild-type VHSV.•rVHSV-ΔG-based vaccines would provide a safe and effective way to control VHSV.

In an earlier study, we generated a replicon viral hemorrhagic septicemia virus (VHSV) particle that was lacking the G gene in the genome (rVHSV-ΔG), and proved the potential of it as a protective vaccine through the immunization of olive flounder (Paralichthys olivaceus) fingerlings. Safety is the most important preconsideration for the development of recombinant live vaccines, and a major concern of propagation-incompetent viral particles would be the possible harmful effect to hosts through the interaction with wild-type viruses. Thus, in the present study, we analyzed the replication of rVHSV-ΔG in the presence of wild-type VHSV and the effect of rVHSV-ΔG on the replication of wild-type VHSV in Epithelioma papulosum cyprini (EPC) cells and in olive flounder fingerlings. The replication of wild-type VHSV in EPC cells was severely suppressed when the MOI of rVHSV-ΔG was 0.1 or 0.01, on the other hand, the titers of rVHSV-ΔG were not increased and stayed in a relatively constant according to time lapse. Furthermore, the replication of other novirhabdoviruses, IHNV and HIRRV, was also inhibited by co-infection with high titers of rVHSV-ΔG. There were no big differences in mortalities between groups infected with wild-type VHSV plus rVHSV-ΔG and groups infected with wild-type VHSV alone, when the challenged wild-type VHSV was more than 102 PFU/fish. However, a group of fish infected with 10 PFU/fish of wild-type VHSV plus rVHSV-ΔG showed significantly lower and slowly progressing cumulative mortality than a group of fish infected with 10 PFU/fish of wild-type VHSV alone. This result suggests that rVHSV-ΔG has an ability to attenuate the disease progression caused by wild-type VHSV when co-infected with relatively low titers of wild-type VHSV. These results indicate that the propagation-incompetent rVHSV-ΔG would not worsen but attenuate the progression of a disease caused by wild-type VHSV infection. Therefore, rVHSV-ΔG-based vaccines can provide a safe and effective way to control VHSV.

Keywords
Related Topics
Life Sciences Agricultural and Biological Sciences Aquatic Science
Authors
, , ,