Article ID Journal Published Year Pages File Type
2440520 Journal of Dairy Science 2008 5 Pages PDF
Abstract
Interest in changing the milk fatty acid profile is growing. However, little is known about the genetic variability of milk fatty acids in the US Holstein population. Therefore, genetic parameters for milk fatty acids were estimated using a single-trait, mixed, linear animal model on 592 individual milk samples from 233 daughters of 53 sires in a cow herd genetically representative of the US Holstein population. Heritability (h2) and repeatability (r) estimates ± standard errors for yields of individual fatty acids ranged from 0.00 ± 0.08 (C4:0) to 0.43 ± 0.13 (C12:0) for heritabilities and from 0.21 ± 0.05 (C18:1) to 0.43 ± 0.05 (C12:0) for repeatabilities. Saturated (h2 = 0.23 ± 0.12; r = 0.36 ± 0.05) and de novo synthesized fatty acids (C6:0 to C14:0; h2 = 0.30 ± 0.13; r = 0.40 ± 0.05) had numerically higher estimates than did monounsaturated (h2 = 0.09 ± 0.09; r = 0.22 ± 0.05) and polyunsaturated fatty acids (h2 = 0.08 ± 0.09; r = 0.27 ± 0.05). For relative proportions of individual fatty acids, the greatest heritability and repeatability estimates were obtained for C8:0 (h2 = 0.18 ± 0.12; r = 0.36 ± 0.05), C10:0 (h2 = 0.22 ± 0.13; r = 0.46 ± 0.05), C12:0 (h2 = 0.18 ± 0.12; r = 0.46 ± 0.05), C16:0 (h2 = 0.09 ± 0.12; r = 0.48 ± 0.05), C16:1 (h2 = 0.49 ± 0.13; r = 0.49 ± 0.05), and C18:0 (h2 = 0.24 ± 0.11; r = 0.39 ± 0.05). Our results suggest the existence of genetic variability of milk fatty acids, in particular of medium-and long-chain fatty acids (C8:0 to C18:0), which could be used to improve the nutritional and textural properties of milk fat by selective breeding.
Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , , , ,