Article ID Journal Published Year Pages File Type
2441677 Journal of Dairy Science 2005 14 Pages PDF
Abstract

Pelleting cottonseed (CS) improves handling characteristics. Our objectives were to determine whether increasing the particle size of the CS pellet or dilution of a smaller pellet with delinted CS would limit the rate of CS oil release to optimize digestibility of fatty acids (FA) and fiber while maintaining milk fat production. In a 5 × 5 Latin square design with 3-wk periods, 5 rumen-cannulated cows were fed 1) control with CS hulls (CSH) and CS meal plus tallow and Ca soaps of FA, 2) whole CS (WCS), 3) small CS pellets (SP; 0.44-cm die diameter), 4) larger CS pellets (LP; 0.52-cm die diameter), or 5) a blend of 12 SP plus 12 partially delinted CS (SPD). Diets contained 39.6% concentrate, 14.4% CS, and 46% forage (40:60, alfalfa hay:corn silage) on a DM basis and were balanced to have similar concentrations of CS protein, CS fiber, and total fat. In a production trial, dietary treatments were 1) WCS control, 2) LP, 3) SPD, and 4) SPD fed at 90%. Sixty cows averaging 105 d in milk were fed the WCS diet for 2 wk and then assigned to one of the 4 diets for 12 wk. Total tract digestibility of NDF was unaffected, but N digestibility was lower for SPD than for other treatments. Fatty acid digestibility was higher for SP and LP (82.6 and 82.3%) than for CSH or SPD treatments (78.8 and 75.3%), and WCS was intermediate (81.1%). The trans-11 C18:1 from cows fed SP and LP (6.58 and 6.24% of total milk FA) was greater than that from cows fed CSH, WCS, and SPD (3.23, 3.79, and 3.97%). The trans-10 C18:1 in milk fat from SP and LP (0.508 and 0.511%) was higher than that in WCS and SPD diets (0.316 and 0.295%); CSH was intermediate (0.429%). Using passage rates estimated from the NRC, disappearance of total FA in situ was estimated to be 17.7, 44.2, 46.6, and 35.0% for WCS, SP, LP, and SPD, respectively. In the production trial, a diet × week interaction was explained by a trend for progressively greater milk production for SPD and SPD90 than for WCS or LP. Milk fat was lower for LP (2.74%) and SPD90 (2.85%) than for WCS or SPD (3.07 and 3.08%). The fat yield was lower for LP than for SPD (1.09 and 1.30 kg/d); WCS and SPD90 were intermediate (1.23 and 1.21 kg/d). Although having a lower FA digestibility, SPD appeared to minimize negative effects of free oil from SP in the rumen, explaining higher DMI and milk production compared with WCS or LP.

Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , , , ,