Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2468013 | Veterinary Microbiology | 2010 | 7 Pages |
The aim of this study was to characterize the molecular evolution of P and V protein genes of the Newcastle disease virus (NDV). The P gene sequences of 55 NDV isolates, representing different chronological and geographic origins, were obtained from GenBank. In this paper, the evolution of the specific regions of the NDV P gene, encoding the P and V proteins, was analyzed. The nucleotides from the shared P/V region encoded the co-amino terminus of the two proteins, while the P–V/V–P region was respectively encoded by the nucleotides within the P ORF or the V ORF in the common sequence (after the mRNA editing site). As well, the P-cut region exclusively encoded the P protein. Finally, the P–V and V–P regions were further broken down into P1 and P2 fragments with the corresponding V1 and V2 fragments. In the P gene, the P-cut portion corresponding to the C-terminal of the P protein was the most highly conserved, while the P–V region was the most variable. This was interpreted as a lower constraint for function in the common sequence than in the unique P sequence that is known to contain an important function. Interestingly, in the common P–V/V–P function, variability of V1 was compensated by a higher conservation of the corresponding P1, and conversely for the P2/V2, which suggested that the flexibility of one ORF with less function served the purpose of allowing positive selection in the other overlapping ORF that exhibited more function.