Article ID Journal Published Year Pages File Type
2498820 Experimental and Toxicologic Pathology 2015 8 Pages PDF
Abstract

Atropine is an anticholinergic drug for mydriasis in eye clinic, and its abuse might be cytotoxic to the cornea and result in blurred vision. However, the cytotoxicity of atropine to the cornea and its cellular and molecular mechanisms remain unknown. In this study, we investigated the cytotoxicity of atropine to corneal epithelium and its underlying mechanisms using an in vitro model of non-transfected human corneal epithelial (HCEP) cells. Our results showed that atropine, above the concentration of 0.3125 g/l (1/32 of its therapeutic dosage in eye clinic), had a dose- and time-dependent toxicity to HCEP cells by inducing morphological abnormality, cytopathic effect, viability decline, and proliferation retardation. Moreover, the proliferation-retarding effect of atropine on the cells was achieved by inducing G1/S phase arrest and downregulation of E-cadherin and β-catenin. Besides, atropine also had an apoptosis-inducing effect on the cells by inducing phosphatidylserine externalization, plasma membrane permeability elevation, DNA fragmentation and apoptotic body formation. Furthermore, atropine could also induce activations of caspase-2, -3 and -9, disruption of mitochondrial transmembrane potential, downregulation of Bcl-2 and Bcl-xL, upregulation of Bax and Bad, and upregulation of cytoplasmic cytochrome c and apoptosis-inducing factor, implying a death receptor-mediated mitochondrion-dependent pathway is most probably involved in the apoptosis of HCEP cells induced by atropine. Taken together, our results suggest that atropine has remarkable cytotoxicity to HCEP cells by inducing cell cycle arrest and death receptor-mediated mitochondrion-dependent apoptosis.

Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , ,