Article ID Journal Published Year Pages File Type
2779095 Arthropod Structure & Development 2006 11 Pages PDF
Abstract

Knowledge about the neuronal pathways of the taste system is interesting both for studying taste coding and appetitive learning of odours. We here present the morphology of the sensilla styloconica on the proboscis of the moth Heliothis virescens and the projections of the associated receptor neurones in the central nervous system. The morphology of the sensilla was studied by light microscopy and by scanning- and transmission electron microscopy. Each sensillum contains three or four sensory neurones; one mechanosensory and two or three chemosensory. The receptor neurones were stained with neurobiotin tracer combined with avidin-fluorescein conjugate, and the projections were viewed in a confocal laser-scanning microscope. The stained axons entered the suboesophageal ganglion via the maxillary nerves and were divided into two categories based on their projection pattern. Category one projected exclusively ipsilaterally in the dorsal suboesophageal ganglion/tritocerebrum and category two projected bilaterally and more ventrally in the suboesophageal ganglion confined to the anterior surface of the neuropil. The bilateral projecting neurones had one additional branch terminating ipsilaterally in the dorsal suboesophageal ganglion/tritocerebrum. A possible segregation of the two categories of projections as taste and mechanosensory is discussed.

Related Topics
Life Sciences Agricultural and Biological Sciences Insect Science
Authors
, , ,