Article ID Journal Published Year Pages File Type
2791039 Zoology 2012 6 Pages PDF
Abstract

Animals use a suite of sensory modalities to precisely locate and capture prey. While numerous studies have examined the effects of sensory deprivation on the behaviors leading to prey capture and while it is generally believed that information in the pre-strike period determines the way fish capture prey, this study is the first to examine the contribution of sensory information to jaw kinematics during capture. Largemouth bass were filmed using high-speed videography while capturing live mosquitofish. Bass were examined intact, with visual deprivation under infrared light, and with lateral line deprivation following treatment with cobalt chloride. Deprived of visual cues, this visual ram-feeding predator switches towards suction-based feeding to successfully capture prey. They approach prey slowly but open their mouths more rapidly, which has been shown to result in greater buccal pressure, causing their prey to move a greater distance at a more rapid velocity as they are being drawn into the predators’ mouths. Deprived of lateral line cues, bass have higher forward velocities during capture and capture prey earlier in the gape cycle. This study demonstrates that sensory pre-strike information directly affects the capture modality employed by fishes and that fish can modulate between ram and suction not only by adjusting the amount of ram by increasing or decreasing their movements, but also by actively increasing the amount of suction used. These results suggest that the ability to modulate feeding behavior may allow animals to not only exploit a broader breadth of prey items, but also to be capable of doing so in a wider variety of environments.

Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, ,