Article ID Journal Published Year Pages File Type
2791165 Zoology 2012 9 Pages PDF
Abstract

The pectines of scorpions are a single pair of mechano- and chemosensory appendages located ventrally behind the most posterior pair of walking legs. They are used for probing the substrate in behaviours such as prey tracking and courtship. The sensory afferents on the pectines supply large segmental neuropils with a conspicuous glomerular structure. The pectine neuropils thus bear similarities to insect and crustacean deutocerebral chemosensory centres associated with the antennae, but they also possess idiosyncratic features. One characteristic property of many insect and decapod crustacean olfactory neuropils is their innervation by single, or very few, large serotonergic (inter-) neurons. This feature, among others, has been proposed to support homology of the olfactory lobes in the two arthropod groups. A possible serotonergic innervation of the scorpion pectine neuropils has not yet been studied, despite its apparent diagnostic and functional importance. We thus examined serotonin-immunoreactivity in the pectine neuropils of Androctonus australis and Pandinus imperator. Both scorpion species yielded similar results. The periphery of the neuropil and the matrix between the glomeruli are supplied by a dense network of serotonin-immunoreactive (5-HT-ir) arborisations and varicosities, while the glomeruli themselves are mostly free of 5-HT-ir fibres. The 5-HT-ir supply of the pectine neuropils has two origins. The first is a pair of neurons on each body side, up to 30 μm in diameter and thus slightly larger than the surrounding somata. These cell bodies are and associated with the neuromeres of the genital and pectine segments. The situation is reminiscent of the 5-HT supply of insect and crustacean olfactory and antennal neuropils. The second 5-HT innervation of the pectine neuropils is from a group of some 10–20 ipsilateral neuronal somata of slightly smaller size (15–20 μm). These are part of a much larger 5-HT-ir group comprising 70–90 somata. The whole group is located more anteriorly than the single soma mentioned above, and associated with the neuromere of the last (4th) walking leg. When compared to data from other arthropods, our findings may suggest that glomerular organisation is an ancestral feature of primary chemosensory centres innervated by arthropod appendages. This idea needs further scrutiny, although supporting evidence may have been overlooked previously, due to the small size of chemosensory neuropils in walking legs and in reduced segmental appendages.

Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, ,